Mi lista de blogs

domingo, 30 de marzo de 2014

Protocolo de Comunicacion

En informática y telecomunicación, un protocolo de comunicaciones es un conjunto de reglas y normas que permiten que dos o más entidades de un sistema de comunicación se comuniquen entre ellos para transmitir información por medio de cualquier tipo de variación de una magnitud física. Se trata de las reglas o el estándar que define la sintaxis, semántica y sincronización de la comunicación, así como posibles métodos de recuperación de errores. Los protocolos pueden ser implementados por hardware, software, o una combinación de ambos.1
Por ejemplo, el protocolo sobre palomas mensajeras permite definir la forma en la que una paloma mensajera transmite información de una ubicación a otra, definiendo todos los aspectos que intervienen en la comunicación: tipo de paloma, cifrado del mensaje, tiempos de espera antes de dar la paloma por 'perdida'... y cualquier regla que ordene y mejore la comunicación.
En el caso concreto de las computadoras, un protocolo de comunicación, también llamado en este caso protocolo de red, define la forma en la que los distintos mensajes o tramas de bit circulan en una red de computadoras



Ejemplos de protocolos de red

  • Capa 1: Nivel físico
    • Cable coaxial o UTP categoría 5, categoría 5e, categoría 6, categoría 6a Cable de fibra óptica, Cable de par trenzado, Microondas, Radio, RS-232.

  • Capa 2: Nivel de enlace de datos
    • ARP, RARP, Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, ATM, HDLC.,cdp

  • Capa 3: Nivel de red
    • IP (IPv4, IPv6), X.25, ICMP, IGMP, NetBEUI, IPX, Appletalk.

  • Capa 4: Nivel de transporte
    • TCP, UDP, SPX.

  • Capa 5: Nivel de sesión
    • NetBIOS, RPC, SSL.

  • Capa 6: Nivel de presentación
    • ASN.1.

  • Capa 7: Nivel de aplicación
    • SNMP, SMTP, NNTP, FTP, SSH, HTTP, CIFS (también llamado SMB), NFS, Telnet, IRC, POP3, IMAP, LDAP, Internet Mail 2000, y en cierto sentido, WAIS y el desaparecido GOPHER.




1.- Topología de red de área local.

  
Topología: se emplea  para referirse a la disposición geométrica de las estaciones de una red y los cables que la conectan, y al trayecto seguido por las señales a través de la conexión física. La topología de red es entonces la disposición de los diferentes componentes de una red y la forma que adopta el flujo de información.
Las topologías fueron ideadas para establecer un orden que evitase un caos que se produciría se las estaciones de una red fueran colocadas de forma aleatoria. La topología tiene como objetivo hallar como todos los usuarios pueden conectarse a todos los recursos de red de la manera mas económica y eficaz; al mismo tiempo capacita la red para satisfacer las demandas de los usuarios con un tiempo de red lo mas reducido posible. Para determinar que topología resulta mas adecuada para una red completa se tienen en cuenta numerosos parámetros como el numero de maquinas que se van a conectar el tipo de acceso físico, etc.
Dentro del concepto de topología se pueden diferenciar dos aspectos. Topología física y topología lógica.
La topología física
Se refiere a la disposición física de las maquinas, los dispositivos de red y cableado. Así, dentro de la topología física se pueden diferenciar 2 tipos de conexiones: punto a punto y multipunto
En las conexiones punto a punto existen varias conexiones entre parejas de estaciones adyacentes, sin estaciones intermedias.
Las conexiones multipunto cuentan con un único canal de conexión, compartido por todas las estaciones de la red. Cualquier dato o conjunto de datos que envié una estación es recibido por todas las demás estaciones.
La topología lógica
Se refiere al trayecto seguido por las señales a través de la topología física, es decir, la manera en que las estaciones se comunican a través del medio físico. Las estaciones se pueden comunicar entre si, directa o indirectamente, siguiendo un trayecto que viene determinado por las condiciones de cada momento.
La topología o forma lógica de una red se define como la forma de tender el cable a estaciones de trabajo individuales; por muros, suelos y techos del edificio. Existe un número de factores a considerar para determinar cual topología es la más apropiada para una situación dada.
La topología en una red es la configuración adoptada por las estaciones de trabajo para conectarse entre sí.

Topologia de red de area local

Topologías más Comunes

*Estrella: Los datos en estas redes fluyen del emisor hasta el concentrador, este realiza todas las funciones de la red, además actúa como amplificador de los datos.
La red se une en un único punto, normalmente con un panel de control centralizado, como un concentrador de cableado. Los bloques de información son dirigidos a través del panel de control central hacia sus destinos. Este esquema tiene una ventaja al tener un panel de control que monitorea el tráfico y evita las colisiones y una conexión interrumpida no afecta al resto de la red.

tecnologia

*Anillo: Las estaciones están unidas unas con otras formando un círculo por medio de un cable común. El último nodo de la cadena se conecta al primero cerrando el anillo. Las señales circulan en un solo sentido alrededor del círculo, regenerándose en cada nodo. Con esta metodología, cada nodo examina la información que es enviada a través del anillo. Si la información no está dirigida al nodo que la examina, la pasa al siguiente en el anillo. La desventaja del anillo es que si se rompe una conexión, se cae la red completa.

area


*Bus: Esta topología permite que todas las estaciones reciban la información que se transmite, una estación transmite y todas las restantes escuchan. Consiste en un cable con un terminador en cada extremo del que se cuelgan todos los elementos de una red. Todos los nodos de la red están unidos a este cable: el cual recibe el nombre de "Backbone Cable". Tanto Ethernet como Local Talk pueden utilizar esta topología.
El bus es pasivo, no se produce regeneración de las señales en cada nodo. Los nodos en una red de "bus" transmiten la información y esperan que ésta no vaya a chocar con otra información transmitida por otro de los nodos. Si esto ocurre, cada nodo espera una pequeña cantidad de tiempo al azar, después intenta retransmitir la información.

configuraciones

*Híbridas o mixta: El bus lineal, la estrella y el anillo se combinan algunas veces para formar combinaciones de redes híbridas.
Anillo en Estrella: Esta topología se utiliza con el fin de facilitar la administración de la red. Físicamente, la red es una estrella centralizada en un concentrador, mientras que a nivel lógico, la red es un anillo.
"Bus" en Estrella: El fin es igual a la topología anterior. En este caso la red es un "bus" que se cablea físicamente como una estrella por medio de concentradores.
Estrella Jerárquica: Esta estructura de cableado se utiliza en la mayor parte de las redes locales actuales, por medio de concentradores dispuestos en cascada par formar una red jerárquica.

local

Topologia & Protocolo

La Topología es la rama de las matemáticas dedicada al estudio de aquellas propiedades de los cuerpos geométricos que permanecen inalteradas por transformaciones continuas. Es una disciplina que estudia las propiedades de los espacios topológicos y las funciones continuas. La Topología se interesa por conceptos como proximidad, número de agujeros, el tipo de consistencia (o textura) que presenta un objeto, comparar objetos y clasificar, entre otros múltiples atributos donde destacan conectividad, compacidad, metricidad o metrizabilidad, etcétera.

En informática y telecomunicación, un protocolo de comunicaciones es un conjunto de reglas y normas que permiten que dos o más entidades de un sistema de comunicación se comuniquen entre ellos para transmitir información por medio de cualquier tipo de variación de una magnitud física. Se trata de las reglas o el estándar que define la sintaxis, semántica y sincronización de la comunicación, así como posibles métodos de recuperación de errores. Los protocolos pueden ser implementados por hardware, software, o una combinación de ambos

UNIDAD II.- TOPOLOGÍAS Y ARQUITECTURA DE REDES

examinar nuevas tecnologias (inalambricas, telefonicas, PLC, otros)

Tecnologías Bluetooth y Wi Fi

Estas dos tecnologías no compiten entre sí, sino que se complementan. La Bluetooth es mucho más nueva. Es el equivalente inalámbrico de la conectividad USB. Debido a su corto alcance y al bajo consumo de energía se le usa para conectar toda clase de dispositivos a la computadora. También para teléfonos celulares y palmtops. La cobertura máxima que alcanza es de 20 metros.La tecnología Wi Fi por su parte resulta ideal para armar redes de computadoras. Con esta se pueden mover archivos de gran tamaño. La transmisión de los datos la realiza diez veces más rápido que Bluetooth y tiene un alcance de 100 metros en espacios cerrados.









Tecnología 3G

Al igual que GPRS, la tecnología 3G (tecnología inalámbrica de tercera generación) es un servicio de comunicaciones inalámbricas que le permite estar conectado permanentemente a Internet a través del teléfono móvil, el ordenador de bolsillo, el Tablet PC o el ordenador portátil. La tecnología 3G promete una mejor calidad y fiabilidad, una mayor velocidad de transmisión de datos y un ancho de banda superior (que incluye la posibilidad de ejecutar aplicaciones multimedia). Con velocidades de datos de hasta 384 Kbps, es casi siete veces más rápida que una conexión telefónica estándar.






Tecnología IrDA

Esta tecnología, basada en rayos luminosos que se mueven en el espectro infrarrojo.Los estándares IrDA soportan una amplia gama de dispositivos eléctricos, informáticos y de comunicaciones, permite la comunicación bidireccional entre dos extremos a velocidades que oscilan entre los 9.600 bps y los 4 Mbps.



Telefónica BASICA


TELEFONICA CONMUTADA
Se define la Red Telefónica Básica (RTB) como los conjuntos de elementos constituido por todos los medios de transmisión y conmutación necesarios que permite enlazar a voluntad dos equipos terminales mediante un circuito físico que se establece específicamente para la comunicación y que desaparece una vez que se ha completado la misma. Se trata por tanto, de una red de telecomunicaciones conmutada.

La Red Telefónica Conmutada (RTC; también llamada Red Telefónica Básica o RTB) es una red de comunicación diseñada primordialmente para la transmisión de voz, aunque pueda también transportar datos, por ejemplo en el caso del fax o de la conexión a Internet a través de un módem acústico.



Se trata de la red telefónica clásica, en la que los terminales telefónicos (teléfonos) se comunican con una central de conmutación a través de un solo canal compartido por la señal del micrófono y del auricular. En el caso de transmisión de datos hay una sola señal en el cable en un momento dado compuesta por la de subida más la de bajada, por lo que se hacen necesarios supresores de eco.



El sistema de codificación digital utilizado para digitalizar la señal telefónica fue la técnica de modulación por impulsos codificados, cuyos parámetros de digitalización son:



Frecuencia de muestreo:8000 Hz
Número de bits: 8
Ley A (Europa)
Ley µ (USA y Japón)
El tratamiento que se aplica a la señal analógica es: filtrado, muestreo y codificación de las muestras. La frecuencia de muestreo Fs es siempre superior a la
Nyquist.


TECNOLOGIA PLC

La tecnología Power Line Communications (PLC) hace posible la transmisión de voz y datos a través de la línea eléctrica doméstica o de baja tensión. Esta tecnología hace posible que conectando un módem PLC a cualquier enchufe de nuestra casa, podamos acceder a Internet a una velocidad entre 2 y 20 Mbps, aunque en las pruebas que ha realizado la empresa española DS2 han llegado a alcanzar los 45 Mbps de subida.




Pero según los esquemas que he visto, esta tecnología que sólo funciona sobre líneas de media y baja tensión, lo que hace es conectar el centro de transformación de media tensión con un centro de servicios mediante fibra óptica y una unidad de acoplo, es decir, la señal de voz y datos se incorpora en el centro de transformación de la zona.


La tecnología PLC está enfocada a dos tipos de servicios independientes pero complementarios:


- La red de acceso, como método para dar servicio en el bucle final de abonado.


- In-home, para crear redes LAN a través de la red eléctrica de los hogares, lo que permitiría prestar servicios de domótica.




¿Cómo funciona y qué aparatos se requieren para que el usuario pueda disfrutar de la tecnología PLC?



PLC funciona desde un nodo conectado a Internet en la subestación eléctrica o centro de transformación, lugar en el cual se encuentra la cabecera PLC que realiza la conversión entre la señal óptica del backbone de la red a la señal eléctrica utilizada en PLC. Desde este punto hasta el hogar, el cable eléctrico transporta energía y datos, los cuales han de ser leídos por un Chipset o electromódem colocado en cada aparato doméstico. Dependiendo de la distancia entre la cabecera PLC y el usuario, será necesario la utilización de equipos de repetición.





En lo referente a compañías extranjeras, existe la empresa suiza Ascom que fabrica 24.000 módems mensuales con velocidades de 2,25 Mb/s y también la empresa israelí Main.Net, proveedor de la empresa alemana MVV, con 600 clientes conectados y que ofrece velocidades de 1,5 Mb/s. Así pues, la tecnología PLC se está desarrollando en distintas partes del mundo pero todas ofrecen velocidades inferiores a la alcanzada por la empresa valenciana Ds2.


Ventajas del PLC:


Las ventajas competitivas del PLC son:




* Utiliza infraestructura ya desplegada (los cables eléctricos).



* Cualquier lugar de la casa con un enchufe es suficiente para estar conectado.



* Coste competitivo en relación con tecnologías alternativas.



* Alta velocidad (banda ancha)


* Suministra múltiples servicios con la misma plataforma tecnológica IP, así un sólo módem permite acceso a Internet, telefonía, domótica, televisión interactiva. seguridad, etc..)


* Instalación rápida.


* Conexión permanente.



Transmision sincronica & asincronica

La transmisión síncrona es una técnica que consiste en el envío de una trama de datos (conjunto de caracteres) que configura un bloque de información comenzando con un conjunto de bits de sincronismo (SYN) y terminando con otro conjunto de bits de final de bloque (ETB). En este caso, los bits de sincronismo tienen la función de sincronizar los relojes existentes tanto en el emisor como en el receptor, de tal forma que estos controlan la duración de cada bit y carácter.
Dicha transmisión se realiza con un ritmo que se genera centralizadamente en la red y es el mismo para el emisor como para el receptor. La información se transmite entre dos grupos, denominados delimitadores (8 bits).
Características
Los bloques a ser transmitidos tienen un tamaño que oscila entre 128 y 1,024 bytes. La señal de sincronismo en el extremo fuente, puede ser generada por el equipo terminal de datos o por el módem. Cuando se transmiten bloques de 1,024 bytes y se usan no más de 10 bytes de cabecera y terminación, el rendimiento de transmisión supera el 99 por 100.
Ventajas
  • Posee un alto rendimiento en la transmisión
  • Los equipamientos son de tecnología más completa y de costos más altos
  • Son aptos para transmisiones de altas velocidades (iguales o mayores a 1,200 baudios de velocidad de modulación)
  • El flujo de datos es más regular.
La transmisión asíncrona se da lugar cuando el proceso de sincronización entre emisor y receptor se realiza en cada palabra de código transmitido. Esta sincronización se lleva a cabo a través de unos bits especiales que definen el entorno de cada código.
También se dice que se establece una relación asíncrona cuando no hay ninguna relación temporal entre la estación que transmite y la que recibe. Es decir, el ritmo de presentación de la información al destino no tiene por qué coincidir con el ritmo de presentación de la información por la fuente. En estas situaciones tampoco se necesita garantizar un ancho de banda determinado, suministrando solamente el que esté en ese momento disponible. Es un tipo de relación típica para la transmisión de datos.
En este tipo de red el receptor no sabe con precisión cuando recibirá un mensaje. Cada carácter a ser transmitido es delimitado por un bit de información denominado de cabecera o de arranque, y uno o dos bits denominados de terminación o de parada.
  • El bit de arranque tiene dos funciones de sincronización de reloj del transmisor y del receptor.
  • El bit o bits de parada, se usan para separar un caracter del siguiente.
Después de la transmisión de los bits de información se suele agregar un bit de paridad (par o impar). Dicho Bit sirve para comprobar que los datos se transfieran sin interrupción. El receptor revisa la paridad de cada unidad de entrada de datos.

BANDA ANCHA POR CABLE

El término banda ancha comúnmente se refiere al acceso de alta velocidad a Internet. Este término puede definirse simplemente como la conexión rápida a Internet que siempre está activa. Permite a un usuario enviar correos electrónicos, navegar en la web, bajar imágenes y música, ver videos, unirse a una conferencia vía web y mucho más.

El acceso se obtiene a través de uno de los siguientes métodos:
  • Línea digital del suscriptor (DSL)
  • Módem para cable
  • Fibra
  • Inalámbrica
  • Satélite
  • Banda ancha a través de las líneas eléctricas (BPL)
La inversión privada ha logrado que el sistema de banda ancha esté disponible en el 90 por ciento de la población de los EE. UU. De hecho, los proveedores de banda ancha han invertido más de 120 mil millones de dólares en los últimos años para asegurarse de que los proveedores de contenido, los creadores de aplicaciones y los usuarios de estos servicios tengan las opciones más amplias posibles de las mejores experiencias de Internet posibles.
El acceso por banda ancha es más rápido que la conexión de acceso telefónico y es diferente por lo siguiente:
  • El servicio de banda ancha ofrece velocidad más alta de transmisión de datos – Permite el transporte de más contenido por la “tubería” de transmisión.
  • La banda ancha ofrece acceso a los servicios de Internet de más alta calidad – medios de comunicación audiovisual por Internet, VoIP (telefonía por Internet), juegos y servicios interactivos. Muchos de estos servicios, actuales y en desarrollo, requieren la transferencia de grandes cantidades de datos, lo que no es técnicamente factible con el servicio de marcación telefónica. Por lo tanto, el servicio de banda ancha puede ser cada vez más necesario para tener acceso a la amplia gama de servicios y oportunidades que puede ofrecer Internet.
  • El sistema de banda ancha siempre está activo – No bloquea las líneas telefónicas y no necesita conectarse de nuevo a la red después de terminar su sesión.
  • Menos demora en la transmisión de contenido cuando utiliza el servicio de banda ancha.

3. Describir los modos y transmisión de datos.

Transmision de datos analogica & digital

Transmisión analógica de datos analógicos

Este tipo de transmisión se refiere a un esquema en el que los datos que serán transmitidos ya están en formato analógico. Por eso, para transmitir esta señal, el DCTE (Equipo de Terminación de Circuito de Datos) debe combinar continuamente la señal que será transmitida y la onda portadora, de manera que la onda que transmitirá será una combinación de la onda portadora y la señal transmitida. En el caso de la transmisión por modulación de la amplitud, por ejemplo, la transmisión se llevará a cabo de la siguiente forma:

Transmisión analógica de datos digitales

Cuando aparecieron los datos digitales, los sistemas de transmisión todavía eran analógicos. Por eso fue necesario encontrar la forma de transmitir datos digitales en forma analógica.
La solución a este problema fue el módem. Su función es:
  • En el momento de la transmisión: debe convertir los datos digitales (una secuencia de 0 y 1) en señales analógicas (variación continua de un fenómeno físico). Este proceso se denomina modulación.
  • Cuando recibe la transmisión: debe convertir la señal analógica en datos digitales. Este proceso se denomina demodulación.
De hecho, la palabra módem es un acrónimo para MOdulador/DEModulador..

Software de red



Software de Red
En el artículo Software de Red se definen los conceptos de Red, Software, Recursos, Software de Red y Topología; se detallan los componentes, características, tipos de red, ventajas, y tipos de topologías de una red, los elementos de Software de Red y los Fabricantes más importantes de productos de Redes; Sistemas Operativos de Red Trabajo en Grupo más importantes; Sistemas Operativos de Red basados en servidor más importantes.

Software de Red ¿Qué es el software de red?  En el software de red se incluyen programas relacionados con la interconexión de equipos informáticos, es decir, programas necesarios para que las redes de computadoras funcionen. Entre otras cosas, los programas de red hacen posible la comunicación entre las computadoras, permiten compartir recursos (software y hardware) y ayudan a controlar la seguridad de dichos recursos.El software de red consiste en programas informáticos que establecen protocolos, o normas, para que las computadoras se comuniquen entre sí. Estos protocolos se aplican enviando y recibiendo grupos de datos formateados denominados paquetes. Los protocolos indican cómo efectuar conexiones lógicas entre las aplicaciones de la red, dirigir el movimiento de paquetes a través de la red física y minimizar las posibilidades de colisión entre paquetes enviados simultáneamente además los programas de red hacen posible la comunicación entre las computadoras, permiten compartir recursos (software y hardware) y ayudan a controlar la seguridad de dichos recursos. Software de aplicaciones
Está formado por programas informáticos que se comunican con los usuarios de la red y permiten compartir información (como archivos de bases de datos, de documentos, gráficos o vídeos) y recursos (como impresoras o unidades de disco). Un tipo de software de aplicaciones se denomina cliente-servidor. Las computadoras cliente envían peticiones de información o de uso de recursos a otras computadoras, llamadas servidores, que controlan el flujo de datos y la ejecución de las aplicaciones a través de la red. Otro tipo de software de aplicación se conoce como "de igual a igual" (peer to peer). En una red de este tipo, los ordenadores se envían entre sí mensajes y peticiones directamente sin utilizar un servidor como intermediario.

Sistema Operativo Local



SISTEMA OPERATIVO LOCAL
Es la interconexión de varias computadoras y periféricos. Su extensión está limitada físicamente a un edificio o a un entorno de 200 metros, con repetidores podría llegar a la distancia de un campo de 1 kilómetro. Su aplicación más extendida es la interconexión de computadoras personales y estaciones de trabajo en oficinas, fábricas, etc.
El término red local incluye tanto el hardware como el software necesario para la interconexión de los distintos dispositivos y el tratamiento de la información.
Funciones y características de los sistemas operativos.
Funciones de los sistemas operativos.
Aceptar todos los trabajos y conservarlos hasta su finalización.
Interpretación de comandos: Interpreta los comandos que permiten al usuario comunicarse con el ordenador.
Control de recursos: Coordina y manipula el hardware de la computadora, como la memoria, las impresoras, las unidades de disco, el teclado o el Mouse.
Manejo de dispositivos de E/S: Organiza los archivos en diversos dispositivos de almacenamiento, como discos flexibles, discos duros, discos compactos o cintas magnéticas.
Manejo de errores: Gestiona los errores de hardware y la pérdida de datos.
Secuencia de tareas: El sistema operativo debe administrar la manera en que se reparten los procesos. Definir el orden. (Quien va primero y quien después).
Protección: Evitar que las acciones de un usuario afecten el trabajo que está realizando otro usuario.
Multiacceso: Un usuario se puede conectar a otra máquina sin tener que estar cerca de ella.
Contabilidad de recursos: establece el costo que se le cobra a un usuario por utilizar determinados recursos.
En una computadora actual suelen coexistir varios programas, del mismo o de varios usuarios, ejecutándose simultáneamente. Estos programas compiten por los recursos de la computadora, siendo el sistema operativo el encargado de arbitrar su asignación y uso. Como complemento a la gestión de recursos, el sistema operativo ha de garantizar la protección de unos programas frente a otros y ha de suministrar información sobre el uso que se hace de los recursos